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Datacenter (DC) Topology
Hyperscale DC Small-medium DC

(<100 racks, <10K servers)

Standard

High
performance

3-tier Fat-tree

Adoption restricted due to 
management/wiring complexity, 

non-traditional protocols

Expanders (e.g. Jellyfish)
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Our work
■ Are there more efficient topologies at 

small scale?

■ Can we make them practical?
- routing
- management/wiring complexity
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● Expanders: maximally “connected” graphs
■ High performance, especially at large scale
■ Provably near-optimal as n → ∞
■ Not obvious if they’re better than leaf-spines (since 

leaf-spine has shorter path length than 3-tier Clos)

Candidates for efficient topologies 
at small scale

Image borrowed from the Jellyfish talk, NSDI 2012
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● Expanders: maximally “connected” graphs
■ High performance, especially at large scale
■ Provably near-optimal as n → ∞
■ Not obvious if they’re better than leaf-spines (since 

leaf-spine has shorter path length than 3-tier Clos)

● Other candidates?
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at small scale

Image borrowed from the Jellyfish talk, NSDI 2012
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1. Expansion: how “well connected” the graph is
■ Results in shorter paths → less resource utilization per unit 

throughput
■ Helps in keeping traffic well-balanced across the network

First image borrowed from the Jellyfish talk, NSDI 2012
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What are the reasons for 
expanders’ high performance?



1. Expansion: how “well connected” the graph is
■ Results in shorter paths → less resource utilization per unit 

throughput
■ Helps in keeping traffic well-balanced across the network

2. Flatness: servers evenly distributed across all switches
■ Even distribution → Helps in alleviating hotspots

First image borrowed from the Jellyfish talk, NSDI 2012
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What are the reasons for 
expanders’ high performance?



2 tier Leaf spine

Network uplinks/Server in a rack (NS Ratio)
         = 2 network links / 4 servers = 0.5

2 network 
uplinks

4 servers
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2 tier Leaf spine
Flat topology: ToRs are directly connected

Network uplinks/Server in a rack (NS Ratio)
         = 2 network links / 4 servers = 0.5

NS Ratio = 3 network links/ 3 servers = 1
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(vs any leaf-spine, x leafs y spines)
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Quantifying benefit of flatness



2 tier Leaf spine
Flat topology: ToRs are directly connected

Network uplinks/Server in a rack (NS Ratio)
         = 2 network links / 4 servers = 0.5

NS Ratio = 3 network links/ 3 servers = 1

Flat networks effectively mask oversubscription 
when bottleneck is at ToR network links

2 network 
uplinks

4 servers

3 network 
uplinks

2 times more network uplinks per server 
(vs any leaf-spine, x leafs y spines)
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Analyzing benefit of flatness



DRing: a simple flat network
DRing supergraph

supernode (i) is connected to 
supernodes (i+1) and (i+2)
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DRing: a simple flat network
DRing supergraph

supernode

=

Rack
(ToR switch + servers)
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DRing: a simple flat network
DRing supergraph

superlink

=
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DRing: a simple flat network
DRing supergraph

Bisection bandwidth is O(n) 
worse than an expander!
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Routing design
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2 tier leaf-spine Flat topology

Shortest paths not enough for flat topologies
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2 tier leaf-spine Flat topology

Shortest paths not enough for flat topologies
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L1 L2

2 shortest paths from L1 to L2 1 shortest path from R1 to R2

R1 R2

Need to use non-shortest 
paths for path diversity



Past routing schemes for flat networks

● K-shortest paths + MPTCP [1,2]

● Valiant routing + ECMP + flowlet 
switching [3]

● Dynamic fluid routing [4]

Require changes to hardware or 
control/data plane or endpoint OS

[1] Singla et. al., Jellyfish, NSDI 2012
[2] Valadarsky et. al., Xpander, CoNext 2016
[3] Kassing et. al., Beyond fat-trees without antennae, mirrors, and disco-balls, SIGCOMM 2017
[4] Jyothi et. al., Measuring and Understanding Throughput of Network Topologies, SC 2016
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Our proposal: Shortest-Union(K) routing

Use all paths from R1 to R2 
which are either 

(a) Shortest paths 
(b) or length(path) <= K

Shortest-Union(2)

Prototype implementation on GNS3 on 
emulated Cisco 7200 routers, with BGP and 

VRFs
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Shortest-Union(2): Implementation with 
BGP and VRFs

Route traffic from R1 to R3
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VRF 1

VRF 2

Shortest-Union(2): Implementation with 
BGP and VRFs

Route traffic from R1 to R3
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Shortest-Union(2): Implementation with 
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Route traffic from R1 to R3
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Not all connections are shown.

VRF 1
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Shortest-Union(2): Implementation with 
BGP and VRFs
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Route traffic from R1 to R3
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Not all connections are shown.
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Shortest-Union(2): Implementation with 
BGP and VRFs
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Route traffic from R1 to R3
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Evaluation

Leaf-spine
16 spines, 64 racks, 3072 servers

(a recommended config from Arista)

DRing
80 racks, 2988 servers

Expander: Random regular graph 
(RRG)

80 racks, 3072 servers
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Topologies

Evaluation 
goals

Can flat topologies (DRing, RRG) 
outperform leaf-spine?

Are there classes of topologies, 
besides expanders, that work well 

at small scale?
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(Flat networks + ECMP) don’t work in some cases



Big improvement for skewed traffic with 
shortest-union(2) routing
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Throughput in the C-S model

C-S traffic pattern
C client hosts send to S server hosts

■ Incast: C>>1, S=1
■ Outcast: C=1, S>>1
■ Uniform traffic: C = n/2, S = n/2
■ Skewed: C >> S (or vice-versa)
■ Rack-to-rack: C = S = #hosts in a rack

Clients

Servers

C

S
(C, S)
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Tput(DRing)

Tput(Leaf-spine)

Better
Large C-S values

DRing with 
Shortest-Union(2)
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For skewed traffic, C>>S or S>>C,
DRing’s throughput is ~2x of leaf-spine,
(as predicted by our analysis)



Tput(DRing)

Tput(Leaf-spine)

Better
Large C-S valuesSmall C-S values

DRing with 
Shortest-Union(2)
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Tput(DRing)

Tput(Leaf-spine)

Better
Large C-S valuesSmall C-S valuesShortest-Union(2) 

improves performance 
where ECMP does poorly DRing with 

Shortest-Union(2)

DRing with ECMP

45



46

Are there classes of topologies, 
besides expanders, that work well 

at small scale?



Better

Fig: 99%ile FCT for uniform traffic

DRing: Performance deteriorates with scale
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Better

Fig: 99%ile FCT for uniform traffic 48

Proof that asymptotic expansion is not 
necessary for high performance at 

small scale
(DRing is dramatically different than expander, O(n) 

worse expansion)

DRing: Performance deteriorates with scale



Conclusion & future work
● There are more efficient topologies than Leaf-spine

■ A lot of benefit comes from using a flat network (DRing, Expanders)

● Small scale topology design is different than large scale
■ Efficient topologies exist, which aren’t good at large scale
■ Can have better trade-offs for wiring/management complexity

● Practical routing for flat topologies with standard router features
■ Shortest-Union(K): Prototype implementation with BGP and VRFs

● Future work
■ Optimal topology for small scale DCs
■ Failure handling in flat networks
■ Adaptive routing/load balancing for flat topologies
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Backup Slides
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Troubleshooting in expanders

● Expanders don’t have symmetrical structure
‐ Unlike tree-like Clos topologies

● Asymmetry good for analysis!
‐ We demonstrate it for detecting silent packet drops
‐ … using Bayesian network based inference (Flock)

* Image taken from Chi-Yao’s slides from Jellyfish, NSDI 2012 52



● Flock: localizes problematic links

‐ Using end-to-end flow metrics
■ E.g. retransmits, packets sent, RTT

‐ Models problem via Bayesian network
■ No assumption about topology, routes

‐ Can accommodate both active, passive information

‐ Achieves higher accuracy than other schemes

Flock system
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● Silent packet drops on links
■ 0 - 0.01% on functioning links
■ 0.2 - 2% on failed links
■ Up to 8 failed links

● Jellyfish network with 2500 links@10 Gbps
■ Running ECMP

● Input Information:
■ Active + Passive (A + P)

■ A: application flows with >0 retransmits + their paths
■ P: All other flows, path unknown

■ Passive only (P): All flows, path unknown
■ 300K flows in 1 second monitoring time
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NS3 simulation setup
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Accuracy (recall) for detecting failed links 
over time

Don’t need active info to 
localize failures in 

expander networks

Flock (P) doesn’t work for 
symmetric Clos networks


