Spineless Datacenters

Vipul Harsh UIUC

Sangeetha Abdu Jyothi
UC Irvine \& VMware research

Brighten Godfrey
UIUC \& VMware

HotNets 2020

Datacenter (DC) Topology

Hyperscale DC

Standard

Datacenter (DC) Topology

Hyperscale DC

Standard

High performance

Expanders (e.g. Jellyfish)
Adoption restricted due to management/wiring complexity, non-traditional protocols

Datacenter (DC) Topology

Small-medium DC
(<100 racks, <10K servers)

High performance

Standard non-radional protocols

Datacenter (DC) Topology

Hyperscale DC

Expanders (e.g. Jellyfish)
Adoption restricted due to management/wiring complexity, non-traditional protocols

Small-medium DC (<100 racks, <10K servers)

High performance

Datacenter (DC) Topology

Hyperscale DC

Expanders (e.g. Jellyfish)
Adoption restricted due to management/wiring complexity, non-traditional protocols

Small-medium DC (<100 racks, <10K servers)

?

High performance

Datacenter (DC) Topology

Hyperscale DC

Expanders (e.g. Jellyfish)
Adoption restricted due to management/wiring complexity, non-traditional protocols

Small-medium DC
(<100 racks, <10K servers)

Our work

- Are there more efficient topologies at small scale?
- Can we make them practical?
- routing
- management/wiring complexity

Candidates for efficient topologies at small scale

- Expanders: maximally "connected" graphs
- High performance, especially at large scale
- Provably near-optimal as $\mathrm{n} \rightarrow \infty$
- Not obvious if they're better than leaf-spines (since leaf-spine has shorter path length than 3-tier Clos)

Candidates for efficient topologies at small scale

- Expanders: maximally "connected" graphs
- High performance, especially at large scale
- Provably near-optimal as $\mathrm{n} \rightarrow \infty$
- Not obvious if they're better than leaf-spines (since leaf-spine has shorter path length than 3-tier Clos)

- Other candidates?

What are the reasons for expanders' high performance?

1. Expansion: how "well connected" the graph is

- Results in shorter paths \rightarrow less resource utilization per unit throughput
- Helps in keeping traffic well-balanced across the network

What are the reasons for expanders' high performance?

1. Expansion: how "well connected" the graph is

- Results in shorter paths \rightarrow less resource utilization per unit throughput
- Helps in keeping traffic well-balanced across the network

2. Flatness: servers evenly distributed across all switches

- Even distribution \rightarrow Helps in alleviating hotspots

Analyzing benefit of flatness

Network uplinks/Server in a rack (NS Ratio)
$=2$ network links $/ 4$ servers $=0.5$

Analyzing benefit of flatness

Flat topology: ToRs are directly connected

Network uplinks/Server in a rack (NS Ratio)
$=2$ network links $/ 4$ servers $=0.5$

NS Ratio $=3$ network links/ 3 servers $=1$

Quantifying benefit of flatness

Flat topology: ToRs are directly connected

Network uplinks/Server in a rack (NS Ratio)
$=2$ network links $/ 4$ servers $=0.5$

NS Ratio $=3$ network links/ 3 servers $=1$
2 times more network uplinks per server
(vs any leaf-spine, x leafs y spines)

Analyzing benefit of flatness

2 tier Leaf spine

Network uplinks/Server in a rack (NS Ratio)
$=2$ network links $/ 4$ servers $=0.5$

Flat topology: ToRs are directly connected

NS Ratio $=3$ network links/ 3 servers $=1$
2 times more network uplinks per server
(vs any leaf-spine, x leafs y spines)

Flat networks effectively mask oversubscription when bottleneck is at ToR network links

DRing: a simple flat network

DRing supergraph

supernode (i) is connected to supernodes (i+1) and (i+2)

DRing: a simple flat network

DRing supergraph

DRing: a simple flat network

DRing supergraph

DRing: a simple flat network

DRing supergraph

Bisection bandwidth is $\mathrm{O}(\mathrm{n})$ worse than an expander!

Routing design

Shortest paths not enough for flat topologies

2 tier leaf-spine

Flat topology

Shortest paths not enough for flat topologies

2 shortest paths from L1 to L2

2 tier leaf spine

Flat topology

Shortest paths not enough for flat topologies

2 shortest paths from L1 to L2

2 tier leaf-spine

1 shortest path from R1 to R2

Flat topology

Shortest paths not enough for flat topologies

2 shortest paths from L1 to L2

2 tier leaf-spine

1 shortest path from R1 to R2鲇

Need to use non-shortest paths for path diversity

Flat topology

Past routing schemes for flat networks

- K-shortest paths + MPTCP $[1,2]$
- Valiant routing + ECMP + flowlet switching [3]
- Dynamic fluid routing [4]

Require changes to hardware or control/data plane or endpoint OS

Our proposal: Shortest-Union(K) routing

Shortest-Union(2)

Use all paths from R1 to R2 which are either
(a) Shortest paths
(b) or length(path) $<=\mathrm{K}$

Prototype implementation on GNS3 on emulated Cisco 7200 routers, with BGP and VRFs

Shortest-Union(2): Implementation with BGP and VRFs

Route traffic from R1 to R3

Shortest-Union(2): Implementation with BGP and VRFs

Route traffic from R1 to R3

Shortest-Union(2): Implementation with BGP and VRFs

Route traffic from R1 to R3

Shortest-Union(2): Implementation with BGP and VRFs

Route traffic from R1 to R3

Shortest-Union(2): Implementation with BGP and VRFs

Route traffic from R1 to R3

Shortest-Union(2): Implementation with BGP and VRFs

Route traffic from R1 to R3

Not all connections are shown.

Shortest-Union(2): Implementation with BGP and VRFs

Route traffic from R1 to R3

Not all connections are shown.

Evaluation

Topologies

Leaf-spine
16 spines, 64 racks, 3072 servers
(a recommended config from Arista)

DRing
80 racks, 2988 servers

Expander: Random regular graph (RRG)
80 racks, 3072 servers

Evaluation goals

Can flat topologies (DRing, RRG) outperform leaf-spine?

Are there classes of topologies, besides expanders, that work well at small scale?

Can flat topologies (DRing, RRG) outperform leaf-spine?

(Flat networks + ECMP) don't work in some cases

Big improvement for skewed traffic with shortest-union(2) routing

Throughput in the C-S model

For skewed traffic, $\mathrm{C} \gg \mathrm{S}$ or $\mathrm{S>>C}$,
DRing's throughput is $\sim 2 \times$ of leaf-spine,
(as predicted by our analysis)

Are there classes of topologies, besides expanders, that work well at small scale?

DRing: Performance deteriorates with scale

Fig: 99\%ile FCT for uniform traffic

DRing: Performance deteriorates with scale

Fig: 99\%ile FCT for uniform traffic

Conclusion \& future work

- There are more efficient topologies than Leaf-spine
- A lot of benefit comes from using a flat network (DRing, Expanders)
- Small scale topology design is different than large scale
- Efficient topologies exist, which aren't good at large scale

■ Can have better trade-offs for wiring/management complexity

- Practical routing for flat topologies with standard router features
- Shortest-Union(K): Prototype implementation with BGP and VRFs
- Future work
- Optimal topology for small scale DCs
- Failure handling in flat networks
- Adaptive routing/load balancing for flat topologies

Conclusion \& future work

- There are more efficient topologies than Leaf-spine
- A lot of benefit comes from using a flat network (DRing, Expanders)
- Small scale topology design is different than large scale
- Efficient topologies exist, which aren't good at large scale
- Can have better trade-offs for wiring/management complexity
- Practical routing for flat topologies with standard router features
- Shortest-Union(K): Prototype implementation with BGP and VRFs
- Future work
- Optimal topology for small scale DCs
- Failure handling in flat networks
- Adaptive routing/load balancing for flat topologies

Thank you!

Backup Slides

Troubleshooting in expanders

- Expanders don't have symmetrical structure
- Unlike tree-like Clos topologies
- Asymmetry good for analysis!
- We demonstrate it for detecting silent packet drops
- ... using Bayesian network based inference (Flock)

Flock system

- Flock: localizes problematic links
- Using end-to-end flow metrics
- E.g. retransmits, packets sent, RTT
- Models problem via Bayesian network
- No assumption about topology, routes
- Can accommodate both active, passive information
- Achieves higher accuracy than other schemes

NS3 simulation setup

- Silent packet drops on links
- $0-0.01 \%$ on functioning links
- $0.2-2 \%$ on failed links
- Up to 8 failed links
- Jellyfish network with 2500 links@10 Gbps
- Running ECMP
- Input Information:
- Active + Passive (A + P)
- A: application flows with >0 retransmits + their paths
- P: All other flows, path unknown
- Passive only (P): All flows, path unknown
- 300 K flows in 1 second monitoring time

Accuracy (recall) for detecting failed links over time

Don't need active info to localize failures in expander networks

Flock (P) doesn't work for symmetric Clos networks

